

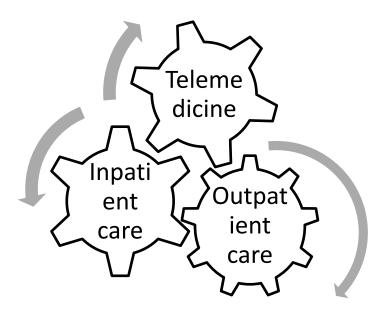
HOW TO MANAGE PATIENT WITH CHRONIC CONDITIONS REMOTELY?

Prof. Dr. med. Friedrich Köhler Charité – Universitätsmedizin Berlin

COCIR - Digitalisation of healthcare: The new normal November 16, 2020

e-Health in Heart Failure

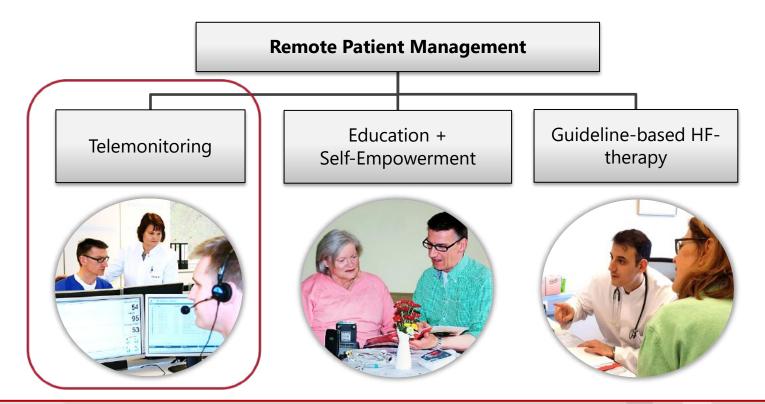
- 1. **Telemedicine** und telecare
- 2. Clinical information systems


e-Health: a position statement of the European Society of Cardiology

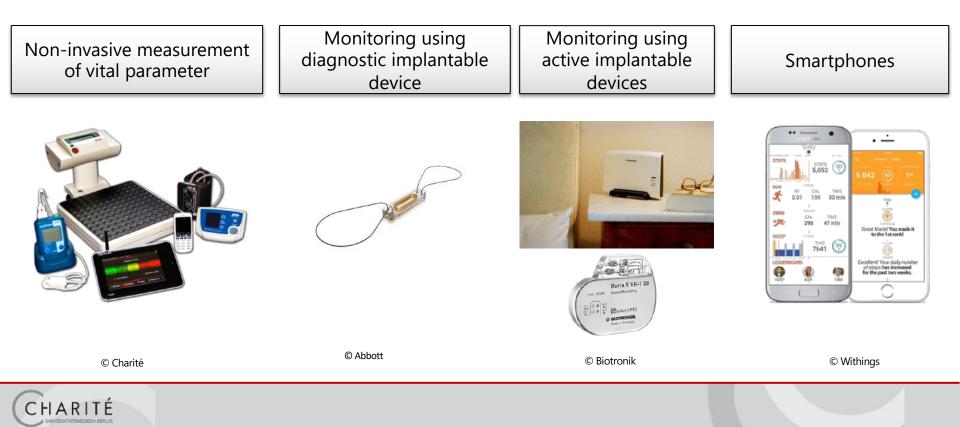
Martin R. Cowie¹*, Jeroen Bax², Nico Bruining³, John G. F. Cleland⁴, Friedrich Koehler⁵, Marek Malik⁶, Fausto Pinto⁷, Enno van der Velde², and Panos Vardas⁸

- Integrated regional and national information networks and associated e-referrals and e-prescribing
- 4. Disease registries and other non-clinical systems used for education, public health, patient/disease related behavior and healthcare management
- 5. Mobile health (including Apps)
- 6. Personalised health
- 7. Big Data

Telemedicine as Part of Healthcare System


- Videoconsultations
- Remote Patient Management for chronic diseases
- Doc2doc consultations/ Telecouncil (e.g.virtual hospital)

Interlocking of the healthcare sectors


Concept of Remote Patient Management (RPM)

Anker SD/ Koehler F et al. Lancet. 2011 Aug 20;378(9792):731-9.

Telemonitoring as an Element of RPM

RCTs for Telemedicine in HF

RPM with noninvasive Telemedicine

TIM-HF2 (Lancet	2018, Lancet Digital health 2020)	1,538 patients, Germany		
TIM-HF	(Circulation 2011)	710 patients, Germany		
BEAT-HF	(JAMA 2016)	1,437 patients, USA		
TELEREH-HF	(JAMA Cardiology 2019)	850 patients, Poland		
OBSICAT	(EJHF 2020)	937 patients, France		

RPM with invasive Telemedicine (Implants)

REM-HF	(Eur Heart J 2017)	1,650 patients, United Kingdom		
IN-TIME	(Lancet 2014)	716 patients, Germany		
CHAMPION-Trial	(Lancet 2011, 2016)	550 patients, USA		
OptiLINK-HF	(Eur Heart J 2016)	1,002 patients, Germany		

Summary of positive RCTs

In the recently hospitalized patients only (1/6 of the total HF-population), who were managed by a telemedical centre:

1. Reduction of all-cause mortality ("IN-TIME", "TIM-HF2")

Hindricks G et al., Lancet. 2014 Aug 16;384(9943):583-90. Koehler F et al. Lancet. 2018 Sep 22;392(10152):1047-57.

2. Reduction of HF-admission rate due to HF ("Champion Trial", "TIM-HF2")

Abraham WT et al. Lancet. 2011 Feb 19;377(9766):658-66. Abraham WT et al. Lancet. 2016 Jan 30;387(10017):453-61 Koehler F et al. Lancet. 2018 Sep 22;392(10152):1047-57.

3. Improvement of quality of life ("Champion Trial", "TIM-HF")

Abraham WT et al. Lancet. 2011 Feb 19;377(9766):658-66. Koehler F et al. Circulation 2011 May 3;123(17):1873-80.

TIM-HF2: Study Design

European Journal of Heart Failure

Telemedical Interventional Management in Heart Failure II (TIM-HF2), a randomised, controlled trial investigating the impact of telemedicine on unplanned cardiovascular hospitalisations and mortality in heart failure patients: study design and description of the intervention

Friedrich Koehler¹*, Kerstin Koehler¹, Oliver Deckwart¹, Sandra Prescher¹, Karl Wegscheider¹, Sebastian Winkler¹, Elik Vettorzazi¹, Andreas Polze⁴, Karl Stang¹, Oliver Hartman⁴, Almuth Marx¹, Petra Neuhaus⁸, Michael Scherf⁹, Bridget-Anne Kirwan⁴, and Stefan D. Anker¹¹

Study design: multicentre RCT in Germany, 1,538 heart failure (HF) patients, hospitalised for HF maximally 12 months previously, with no major depression (PHQ-9<10) and with a LVEF ≤45% or if >45%, diuretics mandatory; Follow-up: 12-months follow-up under intervention + 12 months real-world (extended follow-up)

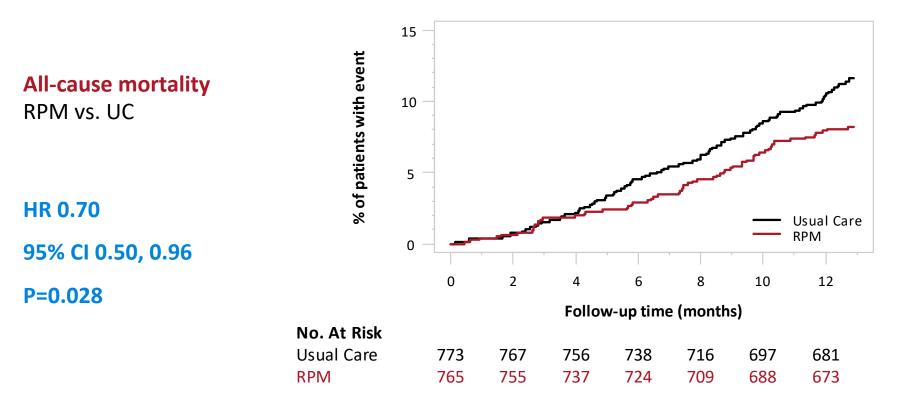
Primary Endpoint: % days lost due to unplanned CVhospital admissions and all-cause death

Secondary Endpoints: all-cause death, cardiovascular death, recurrent HF/CV-hospital admissions, health economics, biomarkers, quality of life

Intervention: Remote Patient Management (RPM) vs Usual Care (UC)

TIM-HF2: Summary of Results

Primary outcome (% days lost due to unplanned CV hospital admissions & allcause death)


- 20% reduction in favor of RPM (ratio 0.80, 95%, CI 0.65–1.00; p=0.046).
- 17.8 days/year vs 24.2 days/year lost for RPM and UC, respectively

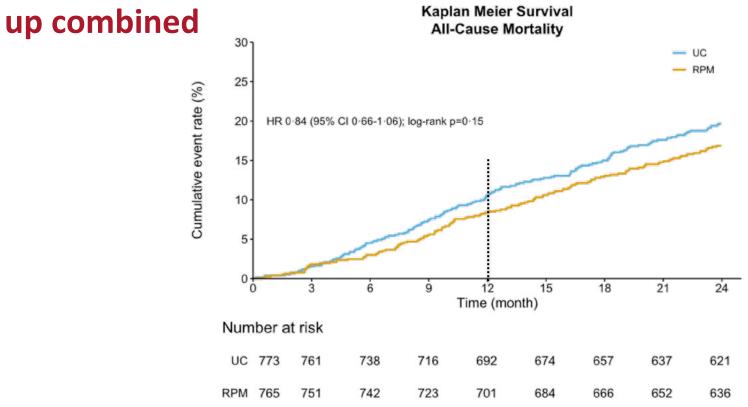
All-cause death:

 30% reduction in favor of RPM (hazard ratio [HR] 0.70, 95%, CI 0.50–0.96; p=0.028).

Main Secondary Outcomes

Koehler F et al. Lancet. 2018 Sep 22;392(10152):1047-57.

Recurrent HF hospital admissions


	RPM (n=765, 739.6 patient years)			UC (n=773, 754.4 patient years)				
	No. of patients with HF hosp. (%)	No. of HF hosp.	Incidence (95% Cl)	No. of patients with HF hosp. (%)	No. of HF hosp.	Incidence (95% Cl)	Ratio RPM vs. UC (95% CI)	p
HF hospital admissions and	164	280	0.441	223	223 (29) 405	0.653	0.676	0.0016
all-cause death	(21)	200	(0.369_0.528)	(29)		(0.553_0.771)	(0.529_0.862)	
HF hospital	153	265	0.414	210 (27)	379	0.596	0.696	0.0047
admissions and CV death (20)	(20)	205	(0.345_0.498)			(0.502_0.707)	(0.541_0.894)	

IRR=Incidence rate ratio; incidence = events/100 patient years of followup; CV=cardiovascular; HF=heart failure; hosp.=hospital admissions

Koehler F et al. Presentation ESC Congress, Paris, Sept 2, 2019

All-cause Death in TIM-HF2: Main Trial & extended Follow-

Koehler F et al. Lancet Digital Health, 2020 (2) 1: e16-e24

ESC-Guidelines and Telemonitoring

Remote Patient Monitoring (implanted devices) class II-B recommendation for

- Consideration of monitoring of pulmonary artery pressures with implantable haemodynamic monitoring system (CardioMems) in patients with previous hospitalization
- Consideration of multiparameter ICD-monitoring (IN-TIME approach) in HFpatients with LVEF ≤35%

Clinical practice update 2019: "Home telemonitoring using an approach that is similar to the one used in TIM-HF2 may be considered for patients with HF in order to reduce the risk recurrent cardiovascular and HF hospitalizations and cardiovascular death"¹

New guidelines planned for 2021

Digital Strategy and open questions in HF 2020

- 1) Research on new sensor technology
- 2) Upscaling of telemedical settings for usage in the real world (inclusion of artificial intelligence technologies)
- 3) Duration of RPM: Evidence for intervention of RPM for 12 Months no evidence for lifelong RPM
- 4) (Profiling of profiting patients)
- 5) (No Evidence for RPM in different health care systems)

New Sensor Technologies to detect Pulmonary Congestion

Implants:

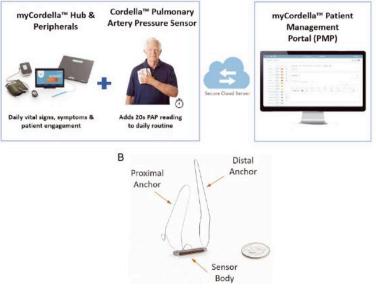
- Pulmonary artery pressure sensor Endotronix, Inc.
- Atrial pressure sensor V-LAPTM

m-Health:

• Voice recognition systems

Digital health care solution for proactive heart failure management with the Cordella Heart Failure System: results of the SIRONA first-in-human study

Study type/patient characteristics: multicentre, open-label,


feasibility study, n=15 HF patients in class NYHA III, follow-up: 90 days, NCT03375710

Primary efficacy Endpoint: Mean pulmonary artery pressure

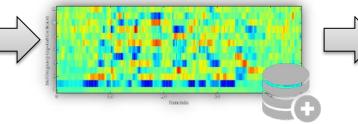
Intervention: Implantation of Cordella Pulmonary Artery Presssure (PAP) Sensor

Results:

- No device-related complications (invasive treatment, device explant or death)
- Patient adherence to daily measurement, transmission of vita signs and PAP sensor readings: 99%
- Difference of PAP of 2.7mmHg (Cordella: 22.5±11.8 mmHg, Swan-Ganz catheter: 25.2±8.5 mmHg)

LA-Pressure Sensor – V-LAPTM

- Left ventricular end diastolic pressure is the best pressure to use when considering left ventricular function¹.
- Left pressure measurement is second best to estimate left sided filling pressures and provides atrial rhythm analysis indirectly



¹ Peverill RE. Int J Cardiol 2015; 191:110-3 ² Guazzi M, Borlaug BA. Circulation 2012; 126(8):975-90

Development of AI-based voice analysis for the diagnostics of cardiac decompensation

Voice recordings

Diagnostic of decompensation

Smartphone-App for

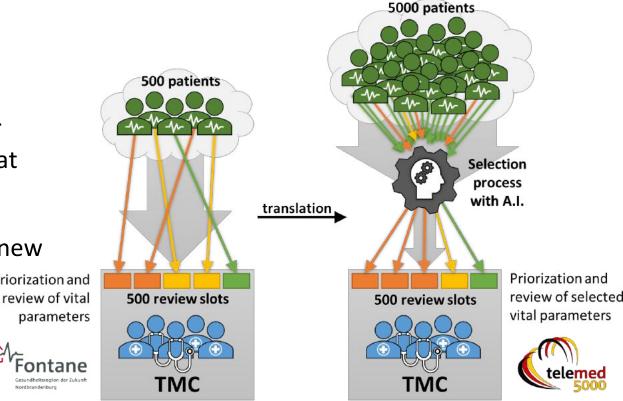
- Voice recordings
- **Project information**

Analysis of voice attributes

- Extraction of voice parameters **Deep Neural Networks**
- AI-based behavioural modelling

Decision Support System at the **Telemedical Centre**

Supported by:


Federal Ministry for Economic Affairs and Energy

Artificial Intelligence and Telemedical Centre

Scaling up the number of patients per TMC:

- a) Artificial Intelligence for priorization of patients at the telemedical centre
- b) Artificial Intelligence in new devices Priorization and

Remote Patient Management for COVID-19

- Proof of benefits for Heart Failure Patients regarding mortality and morbidity
- Also possible for COVID-19 patients at home, e.g. dairy or daily measurement of oxygen saturation to detect deterioration and long-term follow-up
- RPM for Patients with Aortic Stenosis

Telemed5000- COVID-19

Telemedical longterm follow-up of recently hospitalised COVID-19 patients

Study design: single arm, prospective, multicentric, open, observational

Planned study start: Q4/2020

Follow-Up: 12 month for 100 patients

- Daily measurement of weight, blood pressure, SpO2, self-assessment and ECG
- Weekly: voice recording
- Monthly: 6-Minutes-Walk-Test

Supported by

on the basis of a decision by the German Bundestag

Conclusion

- 1. Remote Patient Management (RPM) is a holistic HF care intervention "add-on" to guideline-based therapy of GPs, HF-nurses and specialists
- 2. Telemedicine in HF-patients could show the most robust evidence for a clinical benefit within the whole field of e-health in cardiology
- 3. Current proof of benefits is only for HF-patients in functional class NYHA II/III after hospitalization due to hydropic decompensation
- 4. Development of telemedicine technologies for HF-Patients includes the sensor technologies and telemedical centers (artificial intelligence).
- 5. Remote patient management with non-invasive devices has high potential for longterm follow up of COVID-19 patient, but is not reimbursed yet

